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The transition from nonrenewable to renewable energies represents a
global societal challenge, and developing a sustainable energy portfolio is
an especially daunting task for developing countries where little to no infor-
mation is available regarding the abundance of renewable resources such as
wind. Weather model simulations are key to obtain such information when
observational data are scarce and sparse over a country as large and geo-
graphically diverse as Saudi Arabia. However, output from such models is
uncertain, as it depends on inputs such as the parametrization of the physical
processes and the spatial resolution of the simulated domain. In such situ-
ations a sensitivity analysis must be performed, and the input may have a
spatially heterogeneous influence of wind. In this work we propose a latent
Gaussian functional analysis of variance (ANOVA) model that relies on a
nonstationary Gaussian Markov random field approximation of a continuous
latent process. The proposed approach is able to capture the local sensitivity
of Gaussian and non-Gaussian wind characteristics such as speed and thresh-
old exceedances over a large simulation domain, and a continuous underlying
process also allows us to assess the effect of different spatial resolutions. Our
results indicate that: (1) the nonlocal planetary boundary layer scheme and
high spatial resolution are both instrumental in capturing wind speed and en-
ergy (especially over complex mountainous terrain), and (2) the impact of
planetary boundary layer scheme and resolution on Saudi Arabia’s planned
wind farms is small (at most 1.4%). Thus, our results lend support for the
construction of these wind farms in the next decade.

1. Introduction. Global fossil fuel consumption has increased eight-fold since 1950 and
remains the major contributor to global climate change and atmospheric air pollution (Dincer
(2018), REN21 Secretariat (2021)). Given that oil is a nonrenewable energy resource, the
rapid depletion of its reserves is a problem that humanity will face in the foreseeable future,
prompting the development of alternative, renewable sources of energy. Wind energy, the
focus of this work, grew significantly in recent decades and has already contributed to the
reduction of greenhouse gas emissions and local air pollution. According to recent estimates,
in 2019, 5% of the world’s electricity was generated by wind, with the largest share coming
from the United States and China (REN21 Secretariat (2021), Renewables (2018)). Further,
although European countries have a smaller absolute installed wind capacity, their share in
the energy portfolio is one of the highest, and in Denmark wind is by far the most widespread
form of energy (56.3%).

Despite the growth of wind energy in many countries, in areas such as the Middle East
and North Africa (MENA) the proportion of power generated by this renewable energy is
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among the lowest worldwide (Mohseni-Cheraghlou (2021)). Saudi Arabia, in particular, is
almost exclusively reliant on its abundant oil reserves for its internal energy demand; it has
only recently outlined plans to diversify its energy portfolio using renewable energy sources.
Given the country’s latitude and climate, solar energy is expected to be the primary form of
renewable energy (Aghahosseini, Bogdanov and Breyer (2020)), but the recently proposed
“Vision 2030” plan aims to generate 16 GW of wind energy, which will place the country
in a leading position for wind energy generation (NREP (2018), Nurunnabi (2017)). Unlike
solar energy, which can only be harnessed during daytime, wind is always available and often
peaks during nighttime, thus providing a promising opportunity to integrate complementary
renewable energy resources and hence provide a continuous and reliable supply to the grid.

A comprehensive assessment of wind energy resources in a country as large as Saudi
Arabia cannot be informed solely by observational records, which are very sparse in space,
limited in time and challenging to retrieve. Instead, assessments must be integrated with cli-
mate model simulations, which provide spatially resolved, dynamic and physically consistent
information on wind speed. Over the past few years, considerable progress has been made in
this regard. The initial efforts were directed toward analyzing publicly available simulations
from either global models (Jeong et al. (2018), Jeong et al. (2019)) or regional simulations
(Chen et al. (2018)), such as the MENA COordinated Regional climate Downscaling EX-
periment (MENA CORDEX, Jones, Giorgi and Asrar (2011)). More recently, new and more
detailed assessments have been performed by analyzing ad hoc high-resolution regional sim-
ulations (Crippa et al. (2021), Giani et al. (2020), Tagle et al. (2019), Zhang et al. (2021))
from a state-of-the-art model: the Weather Research and Forecasting (WRF, Skamarock et al.
(2019)).

Numerical models can provide a comprehensive, spatially resolved assessment of wind
over a large country, but each simulation depends on several inputs, including the parameter-
izations for physical processes (especially near the surface), boundary conditions as well as
spatial and temporal resolution. Therefore, any assessment must be performed using a collec-
tion (ensemble) of simulations, with each ensemble member representing a different choice
of the aforementioned input. To provide a reliable uncertainty quantification of wind energy,
it is, therefore, crucial to understand if, to what extent, and where the final wind energy esti-
mates depend on these model choices.

From a methodological point of view, sensitivity analysis of a variable dependent on fac-
tors with multiple levels is one of the oldest and most established problems in statistics, long
before the formulation of numerical simulations. The significance of a factor is assessed by
comparing its variability to the measurement error (analysis of variance, ANOVA). In its
original formulation, ANOVA is aimed at sensitivity analysis of a single variable and a finite
number of factors with different levels being observed independently. More flexible models
have been proposed to perform ANOVA on more complex data structures. In this work we
focus on functional ANOVA (FANOVA), a method developed to perform sensitivity analy-
sis on spatial, temporal or even spatiotemporal process (Stone et al. (1997)). FANOVA has
been used in many fields, such as public health (Huang et al. (2000), Ullah and Finch (2013),
Zhang et al. (2019)), chemistry (Tarrio-Saavedra et al. (2011)) and geoscience (Kaufman and
Sain (2010), Qu, Dai and Genton (2021), Sain, Nychka and Mearns (2011), Sun and Gen-
ton (2012)), and the majority of the applications focused on time series. Stone et al. (1997)
provided a comprehensive review of FANOVA. More recently, Zhang, Hodges and Banerjee
(2009) proposed a smoothed ANOVA model using a Bayesian framework that treated space
as a factor in the model for multivariate observations with an areal spatial structure. Kaufman
and Sain (2010) proposed a Bayesian framework for spatial FANOVA to perform sensitivity
analysis of present and future regional climate simulations. Their work laid the foundation for
a framework to perform the local sensitivity analysis of climate simulations but has several
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limitations. First, the proposed model assumes Gaussian data, thereby limiting the analysis to
continuous variables at a sufficiently high level of temporal aggregation. Second, the spatial
dependence structure was restricted to stationary isotropic models. Although this is a useful
simplifying assumption, it is unrealistic for large simulation domains (Cressie and Huang
(1999), Jun and Stein (2008), Yue and Speckman (2010)). Finally, the assumption of a dis-
crete spatial model without an underlying continuous process would not allow one to perform
FANOVA to ensemble members with differing spatial resolution.

In this work we propose a nonstationary FANOVA model that is able to overcome the
aforementioned methodological limitations. The key idea is that the latent process in the
model can be regarded as the solution of a stochastic partial differential equation (SPDE).
More specifically:

1. The proposed model relies on the flexible class of latent Gaussian models: the
marginal distribution is assumed to be a member of the exponential family, with the ex-
pected values being spatially dependent through an appropriate link function and one or more
latent Gaussian fields. Bayesian inference for this class of latent Gaussian models can be per-
formed by deterministic approximation of the integrals in the posterior distribution using the
integrated Laplace approximation (INLA) method (Rue, Martino and Chopin (2009)).

2. The definition of a spatial model through a solution of an SPDE allows one to natu-
rally generalize FANOVA to a nonstationary setting by generalizing the differential operator
and assuming its nonhomogeneity in space while still allowing a theoretically valid model.
The SPDE chosen allows for an “explicit link” between the SPDE solution and the Gaussian
Markov Random Field (Lindgren, Rue and Lindstrém (2011)). This allows likelihood eval-
uations with a sparse precision matrix and hence fast and affordable inference for very large
spatial data.

3. The use of a FANOVA with a latent Gaussian field assumes an underling continuous
spatial model, which naturally accounts for datasets with different resolutions.

From a methodological standpoint, our work proposes a generalization of the FANOVA
approach in Yue et al. (2019) by allowing a more flexible class of nonstationary models in
the latent Gaussian effects and by quantifying the improvement against a stationary model
with an extensive simulation study. Our work also explores the added value of space-time
interaction.

While the proposed model is motivated by assessing the robustness of Saudi Arabia’s
current plan for wind energy installation, its scope is more general, as it can be applied to any
model ensemble resolved in space and time where one seeks a local sensitivity analysis with
respect to a controlled number of factors.

In Section 2 we introduce the data set of numerical simulations used for this study. Sec-
tions 3 and 4 describe the proposed statistical methodology and inference, respectively. Sec-
tion 5 validates the statistical model with a simulation study. In Section 6 we apply the pro-
posed method to the WRF simulated data of wind speed to assess wind energy sensitivity
across Saudi Arabia. Section 7 provides the conclusions of this study.

2. Data description. This study relies on an ensemble of high-resolution WRF sim-
ulations of the Arabian Peninsula during the years 2013-2016 (Giani et al. (2020)). For
the ease of understanding, we show a topographical map of Saudi Arabia, along with the
names of the regions that will be used throughout this work in Figure S1. The ensemble has
been designed to explore model’s sensitivity toward different spatial resolutions and plane-
tary boundary layer (PBL) schemes. The simulated domain comprises 339 x 299 and 549 x
499 grids at a resolution of nine km and six km, respectively. Wind speed is resolved on a
vertical grid comprising 40 layers, which are more closely spaced near the surface and sparser
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TABLE 1
Resolution and planetary boundary layer (PBL) setup of the four ensemble members

Resolution
9km (j =0) 6km(=1)
PBL MYJ (i=0) Run 1 Run 4
ACM2(Gi=1) Run 2 Run 3

closer to the boundary layer height. In this work we consider wind between 10 and 110 m,
which correspond to the heights of the majority of commercial wind turbines. The initial and
boundary conditions used to drive WRF are obtained from high-resolution European Centre
for Medium-Range Weather Forecast (HRES-ECMWE, European Centre for Medium-Range
Weather Forecasts (2016)) model. The two PBL schemes adopted are: the Mellor—Yamada-—
Janji¢ (MY]J, Janji¢ (1994)) and the asymmetric convective model (ACM?2, Pleim (2007)).
MY/ is a local scheme where the vertical diffusion occurs only between neighboring cells,
while ACM2 is a nonlocal scheme in which the diffusion also occurs between nonneighbor-
ing cells and counter-gradient fluxes. The spatial resolution of the simulation and PBL setup
among the different runs are summarized in Table 1. Figure 1 shows the simulated domain
and the wind speed averaged over the simulated time period for all four ensemble members.
Discrepancies in the magnitude of the simulated wind speed are observed across different
regions and runs, with higher resolution simulations being able to more accurately charac-
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FI1G. 1. Wind speed averaged across the years 2013-2016 simulated using the Weather and Research Forecast-
ing (WRF) model in: (a) MYJ-9 km, (b) ACM2-9 km, (c) MYJ-6 km, and (d) ACM2-6 km.
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FI1G. 2. MYJ-9 km and ACM2-9 km monthly wind speed and fitted value according to model (7) at two locations
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P (Plain) and M (Mountain) indicated by the crosses in Figure 1(a).

terize the topography (and hence the wind speed) in mountainous regions and MY resulting
in higher winds at finer resolution (see panels (c) and (d)). A spatial sensitivity analysis is,
therefore, necessary to quantify the differences across resolutions and PBL schemes, and
motivates the development of the FANOVA model in the next section.

In Figure 2 the monthly wind speed at two selected locations, represented by crosses in
Figure 1(a), shows an interannual, seasonal behavior. Wind speeds are the highest during
the summer and the lowest during winter at location P, a plain area within the Rub’ al Khali
region (see Figure S1 for an indication of Saudi Arabia’s regions) and the opposite at location
M in the Hijaz mountain region. The annual cycle observed is attributable to Saudi Arabia’s
location within the trade-wind belt of the Northern Hemisphere (Hasanean and Almazroui
(2015)). The strong northerly flow contributes to the high wind speeds during the summer.
In addition, the southeastern wind from the Indian Ocean travels to the southeastern part
of the Arabian Peninsula during the monsoon season, further enhancing the summer wind.
However, during winter, the north wind traveling from the Mediterranean to the Persian Gulf
weakens.

Throughout this work N denotes the total number of locations, and the vector Y;;(z) =
(Yij(s1,1),...,Yij(sn, t))T denotes the N-dimensional vector of the variable of interest (all
aggregated at monthly level) at locations sy, ..., sy, for the ith PBL settings (i = 0, 1 indicate
MYJ and ACM2, respectively) the jth resolution (j = 0, 1 indicate nine km and six km,
respectively), and the ¢tth month over the four year time span (t =1, ...,4 x 12).

3. Model. We propose a Bayesian spatiotemporal non-Gaussian FANOVA model with
nonstationary dependence. Because the ensemble introduced in Section 2 has PBL and res-
olution as inputs, we assume two predictors; however, the model can be generalized to any
number,

Yij(t) ~h(p; (1), 0MRG),
g(ﬂij(t)):f(n(t)‘i‘f;f)+iﬂPBL+jﬂRES+5ij([),
K 2kt 2kt
(T) 4y — ; / i
f (t)—l;{g'kmn( 5 )—H;kcos( 5 )}
f,(f) = BALTA,

where bold indicates spatial vectors, for example, &; = (k.15 - - -, Ck: ~) T and similarly for
all other vectors. Each element of the vector Y;;(¢) has a distribution from the exponential

ey
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family A (-), with an expectation p;; () and possibly other marginal parameters 6yrg. The
vector g(-) consists of the same link function g(-) for every location, which depends on the
distribution (e.g., for the Gaussian distribution we have the identity, whereas for the Bernoulli
distribution we have a logit). We assume that the vector of expectations u;;(7) is modeled
using a location-specific N-dimensional vector of time effects f7)(r), a location-specific
(possibly simulation-dependent) N -dimensional vector of time-invariant (fixed) effects f gf),
two Gaussian N -dimensional spatial random vectors Bpg;., Brrs Which represent the local
contribution of PBL and resolution, respectively. In the Supplementary Material (Zhang et
al. (2024)), we also consider a more general model with space-time interaction, which did
yield very marginal improvements but was not implemented for the sake of simplicity and
interpretability. Finally, €;;(¢) represent a Gaussian white noise independent of factors, time
and space with variance 2.

The time effect f () () is described using K annual harmonics controlled at each location
s, by different parameters @time n = {Ck:n» {,é;”, k=1,...,K} so that the total number of
temporal parameters i @me = {@time.n, 7 = 1, ..., N}. In our case the time invariant effect

f l(]F) represents the contribution of the altitude, which is expected to be linear, according to
a parameter BarT, since wind is generally higher in mountainous regions with more complex
terrain; see Figure S2 and associated diagnostics. In our application the altitude map A ;
depends on the resolution of the simulation, hence the subscript j is used. In a standard
two-way ANOVA, the two random effects Bpp;, and Brgg Will be independent in space, but
in FANOVA they are assumed to be the realizations (independent in time) from a Gaussian
random field,

BpeL ~ N (0, Z(6ppL)).
Bres ~ N (0, Z(6rgs)).

where fppr. and frgs are unknown parameters.

In this work we assume X (0¢) = (X;;(0¢));; where £ € {PBL, RES}. Instead of providing
an explicit parametrization of the covariance matrix through a covariance function, we use a
fundamental result in spatial statistics that links a class of covariance functions to the solution
of an SPDE. Specifically, we focus on the Matérn function

2

(3) DCHES (kellsi —s; 1) Ku, (kellsi — s;ll),

72 1T (vp)
where K, is the modified Bessel function of the second kind of order v, ||s; —s;|| is the
Euclidean distance between two generic locations s;,s; € R? and the parameter vector is
0, = (10, k¢, v@)T. The parameter t, controls the marginal precision, and «, controls the range
of the spatial dependence: when we consider a distance /8vy/ky, the spatial correlation is
near 0.1 for all vy (Stein (1999)). Finally, v, controls the degree of smoothness of the process
and is usually fixed because of poor identifiability.

A well-known result (Whittle (1954), Whittle (1963)) stipulates that a Gaussian process
with Matérn covariance is the (unique) stationary solution of a fractional diffusion-reaction
SPDE,

(4) (K2 — A) P2 8,) = WiGs),

where A is the Laplacian operator, 7, controls the variance and W(s) is a spatial Gaussian
white noise with unit variance.

A stationary model resulting from solving (4) is overly simplistic over a large simulated
domain such as the one used in our application. However, one of the main advantages of
the SPDE approach is that it can be used as a baseline to formulate nonstationary models
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that are automatically well-defined, a task considerably more challenging to perform when
relying on covariance-based models. Several options are available to achieve nonstationarity,
ranging from nested SPDEs (Bolin and Lindgren (2011)) to modification of the differential
operator (Fuglstad et al. (2019)). Some recent works have proposed a nonstationary model
based on a local deformation of the SPDE with a changing dependence structure across large
geographical descriptors such as land and ocean in a Euclidean (Fuglstad et al. (2019)) and
global (Fuglstad and Castruccio (2020), Hu, Fuglstad and Castruccio (2022)) domain. Since
in this work the geography of the problem does not suggest a natural partition of the domain,
we instead rely on a basis decomposition approach and assume that 8, is a solution of a
generalization of (4) with varying range and precision,

(5) (K2 (s) — A>T y(9)B,) = Wis),

where vy is fixed and 7,(s) and /cgz(s) change in space, according to some basis function,

log(7e(s)) bm®+Z#Wwﬁ,
©6)
log (e (s)) b“o+Z#Wwﬁ,

so that the total number of spatial parameters is Ogpace = {b,g'fz, b,((fz,k =0,...,p,¢ €
{PBL, RES}}. All parameters are assumed to have independent vague Gaussian priors with
mean zero and variance equal to 1000.

In the Supplementary Material, we have also tested the barrier model (Bakka et al. (2019))
to account for potentially abrupt changes between plains and mountains and obtained far
superior results with the choice of nonstarionary model in (5) and (6).

4. Inference. Inference is performed in two steps, to reduce the overall dimension of the
parameter space at each step. First, £7(r) in (1) is estimated independently for each location
to capture the annual periodicity of the (latent) Gaussian field. Second, inference on @yrg,
BaLT» Ospace is performed conditionally on the posterior mean of the parameters of f (T)(t).
A numerical study of this two-step approach against joint space-time inference on a smaller
subset is performed in the Supplementary Material, showing that the posteriors are similar
for both approaches.

4.1. Step 1: Temporal structure. In the first step, we consider each location s, indepen-
dently, and a marginal time series version of (1) with no spatial and covariate effects,

Yij(Sn,t) ~ h(iij(sn, 1), OMRG),

(7 K ok -
= Sl 2]

k=1

The posterior distribution of @ime.n = {Ck:n» {,é;n, k=1,..., K} is then obtained, and in the
following steps, these parameters are considered fixed at their posterior mean. This condi-
tional approach has, in general, a small impact on the overall assessment of the uncertainty,
as theoretical results (Edwards, Castruccio and Hammerling (2020)) have shown asymptotic
correct results, and numerical results suggest an overall small impact on error propagation
(Castruccio and Guinness (2017)). Inference can be performed independently on multiple
cores on a laptop or a workstation. The fitted values, based on the model inference described
above for two selected locations in Figure 1, are represented by black dashed line in Figure 2.
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4.2. Step 2: Covariates and spatial effects. Once the temporal parameters are estimated,
the parameters @MRrG, Barr, Ospace associated to the marginal model, the covariate effect
parameters and the spatial dependence in (1), respectively, must be estimated.

Inference in this step is especially challenging, given the large number of spatial locations,
which imply a large covariance matrix in (2) and hence challenges in storing it and performing
linear algebra operations. If the diffusion-reaction SPDE (1) as well as its generalization (5)
have a smoothness parameter fixed to an integer number (in this work we assume vy = 1),
then the underlying process can be shown to have the Markov property (Lindgren, Rue and
Lindstrom (2011)). This implies that the continuous solution can be conveniently discretized
via finite volumes with a discrete Gaussian Markov random field with a sparse precision
matrix, hence leading to fast and affordable inference.

The SPDE in (5) is solved by dividing the domain into a triangulation and then approximat-
ing the continuous solution by a piecewise linear function for each triangle, with the quality
of the approximation being determined by the size of the triangulation (Lindgren, Rue and
Lindstrém (2011)). Formally, the finite element approximation of the solution to the SPDE is

T
Be(s) ~ > v (s)wi,
k=1
where 1 (s) are piecewise linear basis functions that are equal to one at vertex k, linearly
decreasing to zero to nearby vertices and zero everywhere else. The weights wy are Gaussian
distributed, and k = 1,..., T where T is the number of vertices in the triangulation. We
define three 7 x T matrices as

C = diag(C;;), Cii = (¥, 1),
Gij =(Vyi, V),
K =«;C +G,

where (-) is the inner product and V is the gradient. The sparse precision matrix of the joint
distribution of the weights in the case of a stationary SPDE (4) can be written as (Lindgren,
Rue and Lindstrom (2011))

(8) Q=KC 'K =1}(k}C +2«}G +GC™'G).

If we further define T and K as diagonal matrices, where T = diag(z(s)) and K =
diag(x (s)), then the precision matrix for the nonstationary SPDE (5) can be written as

Q=T(K’CK*+KG+G'K+GC™'G)T.

4.3. Bayesian inference for latent Gaussian models. To further ease the computational
burden, Bayesian inference for the proposed model (1) will be performed using the INLA
approximation (Rue, Martino and Chopin (2009)), a deterministic method for fast approx-
imation of high-dimensional integrals in Bayesian inference. A comprehensive review of
INLA can be found in the works of Rue, Martino and Chopin (2009) and Bakka et al. (2018).

The INLA approach assumes a latent Gaussian model of which our FANOVA model (2) is
a particular case, and throughout this section we omit the subscripts indicating the input and
the temporal component. We, therefore, assume we have a vector ¥ = (Y (sy),...,Y (sp) "
sampled at locations sy, ..., s, whose marginal distribution is from the exponential family,
possibly described by the hyperparameter vector . We assume that, conditional on a latent
spatial field x, the observations are marginally independent,

n
w(ylx,0) =[x (y(s0)lx(s0)),

i=1
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where x = (x(s1), ..., x(s,)) " is a zero mean Gaussian field modeled with the SPDE ap-
proach in the previous section with precision matrix Q (). Under this model the joint poste-
rior distribution of the latent effects and hyperparameters can be written as

(x,0y) o (@) (x10) [ [ (v(si)Ix(si), 0)

i=1
1 n
()| 0(6)]'"2 exp{—ixTQw)x} TT7(:slx(s). 0).
i=1

where | Q(0)] is the determinant of the precision matrix. To perform inference, it is of interest
to obtain: (1) w(x|y) from which all the marginal distributions 7 (x(s;)|y) can be obtained
and (2) (6;|y), the marginal posterior distributions of the hyperparameters. Both distribu-
tions can be obtained from the following integrals:

7 (x(si)1) =/n(x<s,->|0,y)n(0|y>do,

70519 = [ 7@y do-;.

INLA predicates a Laplace approximation of the hyperparameter posterior 7 (f|y) using
a Gaussian distribution. Such approximation would then allow us to obtain the posterior
marginals of the latent parameter x; as

7 (x(s)1y) = D7 (x(s)10k, y) x 7 (Oxly) x Ag,
k
where Ay are the weights associated with a vector 6 of hyperparameters in a grid.

To summarize, fast Bayesian inference in this work is obtained by exploiting: (1) the la-
tent Gaussian structure of the model, which allows an efficient deterministic Laplace approx-
imation of the integrals determining the posterior distributions, and (2) a spatial model for
the latent Gaussian field obtained through a solution of an SPDE, which results in a sparse
precision matrix and allows us to take advantage of computationally efficient sparse linear
algebra operations. In the Supplementary Material, we compare this inferential approach to
a standard Markov chain Monte Carlo (MCMC) inference for this Bayesian model, and we
experienced that INLA was more than twice as fast, while delivering approximately the same
distributions; see Figure S3.

5. Simulation studies. In this section we compare the ability to capture the spatial struc-
ture of the proposed nonstationary approach in (5), which we denote as NSTAT, against a
standard ANOVA with no spatial dependence (denoted as IND) as well as a spatial model
with stationary SPDE in (4) (denoted as STAT). We show results for two cases: a Gaussian
and a Bernoulli latent model. In Section 5.1 we outline the simulation design, in Section 5.2
we introduce the metrics used to compare the models, while in Sections 5.3 and 5.4, we show
the results for the Gaussian and Bernoulli case, respectively.

5.1. Design. The simulation is designed as a one-factor model on a 15 x 15 regular grid,
for a total of N = 225 locations. We assume a simplified setting of the WRF simulations
with a single two-level factor, each with two replicates and with a deterministic structure
over the spatial domain. Specifically, we denote our simulated response variable at location
sp,n=1,..., N, factor level i € {0, 1} and replicate j € {1, 2} as

Yij(sn) ~ h(@i(sn), OMRG).

9
g(1i(sn)) = Bo +ip11(sy € D) +€;(sp),
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where Y;;(s,) follows a distribution & from the exponential family, g(-) is the link func-
tion, the error €;;(s,) ~ N(0,032) is independent and identically distributed across level i,
replicate j and location s,. We choose a constant nonzero value of 81 for a subdomain D
and zero outside of it. We choose four shapes for D: square, zigzag, bar and U (see Fig-
ure S3). We report here only the results for the square, while the three other shapes are
shown in the Supplementary Material. We evaluate: (1) a Gaussian model with identity link
and 81 = (100, 10,2,1.5,1.2,1,0.5,0.3,0.1), Bo =0 and 6 = 1 and (2) a Bernoulli model
with logit link with (8o, 81) = ((—5, 100), (=5, 10), (—1,2), (-1, 1), (—1,0.5), (—1,0.1))
and o =0.1.
For each simulation, we fit the models assuming

10) 8(1i(sn)) = Bo + iPi(sn) + €ij(sn).

where 8, = (B1(s1), ..., b1 (sy)) T is a Gaussian random field. IND is a standard ANOVA
assuming independence across all the locations, STAT is the stationary SPDE model (4) and
NSTAT is the nonstationary SPDE model obtained solving (5). A total of ng, = 1000 simu-
lations are performed for each shape and parameter combination.

5.2. Metrics. We assess the accuracy of the coefficient estimation using three metrics,
two focused on the point estimates and one on the spatial smoothness of the estimated latent
process. The first one is the proportion of 95% credibility intervals across the ng, simula-
tions containing zero for each location. Ideally, this proportion should be close to 0% inside
D and 100% outside of it. In the Gaussian case, the second metric is the proportion of 95%
credibility intervals that contains the true value of w; (s,) across the entire domain. The extent
to which this proportion is closer to the nominal 95% level is a measure of a correct uncer-
tainty quantification, and better results uniformly across models are expected as the signal to
noise ratio of the true model (9) increases. In the case of the Bernoulli model, for the second
metric we instead use the receiver operating characteristic (ROC) curve, obtained by plotting
the true positive rate against the false positive rate at different thresholds. In particular, we
focus on the area under the curve (AUC) of the ROC curve, which is between zero and one,
with the latter representing perfect prediction.

Finally, we evaluate the model’s ability to capture the smoothness of the posterior mean of
the latent process by assessing the discretized gradient averaged across the four directions,

(11) D, > {Bsa) — Bsw)),

|98nl s,

where 0s, is the set of the nearest neighbors of s;, and |ds,| is its cardinality, which is 4, 3
or 2 depending on whether the point is in the middle, at edge or on the corner of the grid,
respectively. The spatially varying estimate B(sn) represents the posterior mean. Since the
true underlying process, as specified in (9), is nonzero and constant across D, a measure of
performance of the models is the extent to which ,3(5,,) have a small gradient D,, across all
points in the domain but at the boundary of D.

5.3. Results: Gaussian model. In Figure 3 we show the map of the proportion of 95%
credibility intervals containing zero according to the three models for (8g, 81) = (0, 2). The
IND model in panel (a) is able to capture the change in value within the square, but the lack of
spatial dependence results in noisy estimates, both inside and outside the square, as spatially
closer estimates cannot borrow strength from each other. As a result, a substantial number
of simulations will flag zero values inside the square, where the expected percentage is 0%.
STAT and NSTAT in panels (b) and (c) both account for spatial dependence; hence, they
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FIG. 3. Proportion of 95% credibility intervals containing zero for the square design. We compare the models
assuming spatial (a) independence (b) stationarity and (c) nonstationarity.

avoid noisy spatial estimates and are able to capture a change in pattern at the border of the
square as well as a nonzero signal inside of it.

In Figure 4(a) we show the second metric, that is, the empirical coverage of the 95%
credibility intervals (averaged across the domain) as a function of the signal to noise ratio.
As expected, all models show an improvement for a stronger signal, as the characterization
of the latent process and its uncertainty quantification is more apparent from the data. The
IND model has consistently the worst performance and is able to recover a coverage close
to the nominal level only for a very strong signal. The presence of a spatial effect for STAT
and NSTAT allows one instead to have a considerably closer coverage for weaker signals and
consistently better results for NSTAT, given its ability to better capture the complex structure
of the simulated process. Figures S4, S5 and S6 show similar results for the zigzag, bar and U
shape, respectively, while Figure S7 shows similar results for all four shapes when we instead
compare the predictive accuracy by means of the mean squared error.

Figure 5 shows a comparison of IND, STAT and NSTAT in terms of the discretized gradient
D,,. In the case of IND in panel (a), the overall square shape is estimated, but the lack of
spatial dependence results in nonsmooth estimators and occasional local discontinuities, with
an associated nonzero gradient outside the boundaries of D. The STAT model in panel (b)
results instead in a smooth process and smaller gradients outside the square. The lack of
flexibility in capturing local changes in the spatial structure, however, implies an overall lack
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10" 1 E—— 1.0
:
$09- 0.9
£ 10}
< >
[5) = |
&08" 0.8 O
il 2
o b
©0.7" 0.7 §
2 5
o 3
506 06 2
&
E 05 | | | | | ‘ | | | | 05

10 12 15 20 100 100.0 9 5 0 10 50 950
(BotB1)/0 Batfa)/o

FI1G. 4. (a) Proportion of 95% credibility intervals (in the Gaussian case) and (b) area under the curve (in the
Bernoulli case) across the nyiy, = 1000 simulations containing the true values against (Bo + B1)/o in the square
design. The x axis is in the log scale.
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FIG. 5. Map of the posterior mean discretized gradient Dy, as defined in (11), averaged across simulation from
model (9) with 8 = 2 and a square design. Results are shown for the model (10) assuming: (a) IND (median value
across locations 1.13, IRQ 0.029), (b) STAT (0.14,0.06), (c¢) NSTAT (0.07,0.05) (d) The map of estimated B values
for NSTAT.

of ability in capturing the spatial patterns on the square and, in particular, the identification
of a constant value inside it. The nonstationary model NSTAT in panel (c) is instead able to
better capture the spatial structure both outside, inside and at the border of the square. Figures
S7, S8 and S9 show similar results for the zigzag, bar and U shape, respectively.

5.4. Results: Bernoulli model. In Figure 4(b) we show the AUC as a function of the sig-
nal to noise ratio. For very weak signal, the three models have AUC close to 0.5, which corre-
sponds to the predictive performance of a random guess. As the signal increases, however, all
models increase their predictive ability. As in the Gaussian case, IND performs suboptimally,
given its inability to borrow strength across locations in space, STAT has better predictions,
and NSTAT further improves them. Figure S10 shows a comparison of D,, for IND, STAT
and NSTAT with the Bernoulli simulations. As in the Gaussian case, the nonstationary model
outperforms the other two by better capturing the spatial structure.

6. Application. In this section we use the proposed functional ANOVA approach to es-
timate how the PBL and resolution locally affect the wind characteristics in Saudi Arabia.
In Section 6.1 we detail our approach to extrapolate the wind to turbine hub height. In Sec-
tion 6.2 we evaluate the sensitivity of the ensemble runs with respect to PBL. and resolution
for both wind speed and wind energy. Section 6.3 further discusses a non-Gaussian sensitivity
analysis of threshold exceedances.
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6.1. Wind speed extrapolation. In this section we denoted by W (s, &, t) the wind speed
at location s, height # and time 7. Since wind turbines are characterized by a hub height be-
tween 80 m to 110 m, extrapolation is necessary. Numerous literature studies have proposed
models to characterize the vertical profile of wind; see Gualtieri (2019) for a recent review.
A commonly used approach is to assume that the wind speed is directly proportional to the
height through a power coefficient. The power law stipulates that

hk On,t
W(sy, hi,t) = W(sp, by, 1) (h_> )

r

(12)
n(sn.1) ~N(0,07,).

where Ay, is the hub height to which we want to extrapolate and 4, is the reference height
at which wind speed data are available. The shear coefficient a;, ; controls the magnitude of
increase in the mean wind speed as the height increases (Gualtieri (2019)). In the absence of
detailed meteorological observations, the shear coefficient is often assumed to be constant in
space and time: oy, ; = % This choice is based on the assumption of a flat surface and neutral
atmospheric conditions (Peterson and Hennessey (1978)). However, this simplification has
been shown to be largely inappropriate in Saudi Arabia (Crippa et al. (2021)). To estimate the
shear coefficient, our WRF simulations provide the wind speed vertical profile at six levels,
at approximately equally spaced heights from 20 m to about 110 m, in addition to the wind
speed at the reference height of 10 m. A simple log regression can be applied to estimate
oy, using the six levels of wind speed for each of the four WRF runs. An example of the
estimated shear coefficients, their standard deviation and the coefficients of determination R>
for the run MYJ-6 km are displayed in Figure S11. In the mountainous Hijaz area (see Figure
S1) in the west of Saudi Arabia, we observe very small estimated o, ; values, even negative
at some locations, indicating that the wind speed is on average lower at higher altitudes; this
is an uncommon situation associated with large standard deviations and small R? values.
These results suggest that the power law may not be suitable for some geographic locations,
as discussed in previous studies (Crippa et al. (2021), Gualtieri (2019)). However, a previous
study highlighted that the installation of a wind turbine over the complex terrain of the Hijaz
region is not cost effective (Giani et al. (2020)). Therefore, the negative estimates in these
areas are not a cause of concern in this study.

The wind speed at hub height is then converted to wind energy using turbine-specific power
curves that transform wind speed to power. A power curve assumes a value of zero, until a
minimum cut-in speed is reached, and the blades start rotating; then it keeps increasing with
stronger wind speeds. Finally, the power curve reaches a cut-off speed and remains constant
thereafter. We chose the turbine makes and models that were identified as the most cost
effective for each location by Giani et al. (2020); see Figure S12. To compute the total wind
energy that can be generated in each grid cell of our domain, we multiplied the power of
a single turbine by the number of turbines that can fit in a specific grid cell. This number
depends on the length of the turbine blades, as sufficient spacing must be provided to prevent
excessive local turbulence.

6.2. Sensitivity of wind speed and energy. We applied the FANOVA model (1) with a
Gaussian marginal distribution and an identity link to both ground wind speed and energy
and assess the local sensitivity. A triangulation comprising 7 = 53,387 triangles across the
domain was chosen for the SPDE approach; see Figure S13 for a plot of the triangulation
in a subdomain. We chose K = 3 harmonics for the temporal component, as indicated by
the model selection in Figures S14 and S15. The temporal trend can resolve the dynamics
of the data, Figure S16 shows the boxplot of the skewness and excess kurtosis from the
temporal residuals of the model for both wind speed and energy. Overall, the vast majority
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F1G. 6. Posterior mean of the (a) PBL and (b) resolution coefficient of surface wind speed. Panel (c) shows
the proportion of posterior variance from the PBL coefficient against that of resolution. Panel (d) shows the
distribution of wind power for the 75 optimum wind farm locations in Giani et al. (2020) by sampling from the
parameters’ posterior distribution.

of locations show a symmetric distribution with no excess kurtosis, hence lending support
for the Gaussian assumption. Figure S17 shows the posterior distribution of the nonspatial
altitude effect Sarr and the nugget effect o2 in the FANOVA model (1). Consistently with the
diagnostics in Figure S2, BarT is positive with very high probability; hence, wind increases
with altitude.

Figure 6 shows the estimated posterior mean of Bpg; and Brgg using the FANOVA model
described in equation (1) for wind speed, and Figure S18 shows the corresponding results
for wind energy. Figure 6(a) indicates that the ACM2 PBL scheme tends to simulate higher
wind speed than the MYJ scheme over the northern portion of the domain and over the ar-
eas of complex terrain in the southwest area of Saudi Arabia. The difference between the
two schemes is small over large areas of the domain, and MYJ dominates in central Saudi
Arabia. Figure 6(b) shows similar spatial patterns for the simulation resolution, suggesting
that both the higher resolution and the choice of the ACM2 PBL scheme result in higher
winds in the same regions, some of which are characterized by complex topographic fea-
tures that indeed require higher resolution and/or complex physics schemes to capture the
flow patterns in these complex terrains accurately. This is expected as ACM2 combines the
nonlocal and local turbulence scheme for unstable and stable conditions, respectively, unlike
MY/J, which is strictly local. These results agree with prior studies showing higher accuracy
of ACM2 than MY]J, also over complex terrain (Hu, Nielsen-Gammon and Zhang (2010),
Siuta, West and Stull (2017)). The posterior means of the PBL and resolution for wind en-
ergy are shown in Figures S18(a) and (b), respectively. The spatial patterns are similar to
those of wind speed with a generally higher posterior mean (and hence a stronger effect),
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which is a feature attributable to the vertical extrapolation described in the previous section,
as wind at hub height is generally higher. We also show in Figure 6(c) the ratio between the
posterior variance of Bpp;, against the total posterior variance from both effects (see Figure
S18(c) for the corresponding results for wind energy), and it is readily apparent how PBL is
more variable than the resolution for almost all points in the domain, except noticeably in the
western coast, where a sharp transition between the Hijiaz mountain range and the sea can be
better characterized by an increased resolution.

For the 75 locations indicated by Giani et al. (2020) as the most cost-effective for building
wind farms, we can use the proposed model to assess the differences in total monthly wind
power output across ensemble members. Indeed, we fix the parameters to their posterior
mean, simulate 500 realizations of surface wind speed, extrapolate them and compute the
power output according to the power curves. Figure 6(d) shows the boxplot of the wind power
distribution across the simulations for all four ensemble members. The MYJ-9 km simulation
would result in an average output of 2488.5 kW, whereas ACM2-9 km would increase this
on average by 11.95 kW (0.4%), MYJ-6 km by 22.94 kW (0.9%), and ACM2-6 km by 34.89
kW (1.4%). The FANOVA, therefore, lends further support for the siting work in Giani et al.
(2020), which was performed with MYJ-6 km (the simulation with closer validation metric
with respect to some ground observations), by showing an overall robustness of the energy
output with respect to both PBL and resolution.

The same analysis was performed using a standard ANOVA (i.e., assuming spatial inde-
pendence) and a stationary FANOVA, as shown in Figure S19. In the case of ANOVA and in
order to evaluate the impact of resolution, spatial interpolation of wind on the same is neces-
sary, so we upscale the 6 x 6 km simulations to the 9 x 9 km grid of the other simulations in
the ensemble. The stationary FANOVA model does not require any upscaling. The standard
ANOVA suggests that ACM2 PBL scheme tends to simulate slower wind speed along the
coast line (dark blue color in the map), and that resolution has smaller impact than the non-
stationary FANOVA with near zero estimates at the majority of the locations. The stationary
FANOVA results show that ACM2 PBL scheme tends to simulate high wind speeds in the
northern region. With regard to resolution, we observe nonzero estimates at most of the loca-
tions. We can, therefore, conclude that the use of a nonstationary FANOVA emphasizes the
role of the adopted resolution and PBL parameterization, especially in the context of complex
terrains, which is consistent with findings from previous physics-based modeling studies.

We also assessed the smoothness of the latent spatial factors using the discrete Laplacian
for the ANOVA model as well as the FANOVA stationary and nonstationary model. For
wind speed a decrease of 33% (31% for wind energy) of the averaged discrete Laplacian
was observed using FANOVA with stationary assumption, compared to the ANOVA model,
and a further decrease of 25% (18%) was achieved using the nonstationary FANOVA model.
Similar improvements in the smoothness were observed for wind energy data.

6.3. Sensitivity of threshold exceedances. To further assess the sensitivity of wind en-
ergy with respect to the PBL and resolution, we considered the threshold exceedance of wind
power with respect to half of the maximum power output according to the power curve. The
response variable Y;; (), therefore, follows a Bernoulli distribution with a logit link func-
tion g(-) in (1). The temporal parameters f7)(¢) in the FANOVA model (1) were estimated
independently at each location using Bayesian logistic regression. Figure S20 shows the bi-
nary values and fitted values of the Bernoulli model for the P and M locations, as indicated
in Figure 1. The posterior means of the temporal effects were assumed to be fixed, and the
spatial effect was estimated. Figures 7(a) and (b) show the posterior mean of Bpg; and Brgs.,
respectively. For the PBL coefficient, large negative values are observed in the Rub’ al Khali
area, indicated by the dark blue color on the map. This implies that, on average, the nonlo-
cal ACM2 PBL scheme yields a decrease in the threshold exceedances. For the resolution
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coefficient, large positive values in the posterior mean are apparent in the same area as for
the PBL. In other words, in the Rub’ al Khali region, the choice of six km resolution tends
to increase the odds of threshold exceedance. In the central Saudi Arabia and Hijaz region,
both the ACM2 PBL scheme and six km resolution tend to increase the odds of threshold
exceedance.

7. Conclusion. In this study we propose a model-based local sensitivity analysis of a
climate ensemble, with spatially varying latent fields modeled using a nonstationary SPDE.
The proposed approach allows us to capture the spatial dependence for a complex dataset
on a large domain while simultaneously accounting for non-Gaussianity. Furthermore, the
assumption of a continuous underlying process allows us to perform the sensitivity study for
simulations with different spatial resolutions without any ad hoc upscaling. The simulation
studies performed under a wide range of settings provide compelling evidence that the non-
stationary model can capture more complex structures than a standard ANOVA or a stationary
model. The proposed FANOVA approach is then used to provide insights about dependence
of wind speed and energy for Saudi Arabia from PBL scheme and resolution.

The proposed model can be generalized to any sensitivity study consisting of spatiotempo-
rally resolved ensembles with categorical but also quantitative input. From a methodological
point of view, the assumption of a spatially varying precision and range through SPDE and
basis decomposition allows us to capture complex patterns of spatial dependence while si-
multaneously allowing for a valid process. Alternative domain-specific approaches are also
possible: if the geography suggests changes in the dependence structure dictated by descrip-
tors, such as land/ocean, the SPDE operator can be modified to account for that with a more
tailored spatial dependence structure (Fuglstad and Castruccio (2020), Hu, Fuglstad and Cas-
truccio (2022)). Additionally, for applications where several variables are of simultaneous
interest (e.g., temperature, wind and precipitation), a multivariate approach can be proposed
by relying on the sparse approximations of multivariate SPDEs (Hu et al. (2013)), although
the task of determining the dependence structure across both space and variables is currently
limited by the dearth of sufficiently flexible models (Genton and Kleiber (2015)).

From the perspective of the application of interest in this work, our results indicate that
both wind speed and energy are sensitive to the resolution and PBL scheme, with a nonlocal
scheme and high resolution generally resulting in higher winds speeds over complex terrain,
consistently with previous geoscience literature in other world areas. Additionally, this work
indicates that the current plan for building turbines in Saudi Arabia is robust with respect to
the input chosen in the ensemble, as the final output estimates change by at most 1.4% from
the reference siting work (Giani et al. (2020)).
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Finally, while the spatial sensitivity analysis offers scientific insights into the effect of
the resolution and PBL schemes, the ultimate goal is to determine the extent to which these
simulations offer an accurate representation of the true wind fields. The ensemble analyzed
in this work has been validated with ground observations (Giani et al. (2020)); however, the
spatial coverage of the observational network was sparse, and the diagnostic was limited to
standard metrics in the geoscience literature. If a more comprehensive observational data set
becomes available in the future, a more formal model-based approach can be proposed by
assuming a true observational process in the FANOVA, thereby allowing both calibration and
sensitivity analysis. The results from this work are useful to local policy makers in making
decisions to install turbines in specific areas and hence demonstrate how our analyses can
help developing countries to build renewable energy resources.
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SUPPLEMENTARY MATERIAL

Supplement to “Sensitivity analysis of wind energy resources with Bayesian non-
Gaussian and nonstationary functional ANOVA” (DOI: 10.1214/23-A0AS1770SUPP;
.pdf). The supplement contains additional analyses and plots in support to the main find-
ings in the paper. The code for this work is available at the following GitHub repository:
github.com/Env-an-Stat-group/24.Zhang.AoAS.

REFERENCES

AGHAHOSSEINI, A., BOGDANOV, D. and BREYER, C. (2020). Towards sustainable development in the MENA
region: Analysing the feasibility of a 100% renewable electricity system in 2030. Energy Strategy Reviews 28
100466.

BAKKA, H., RUE, H., FUGLSTAD, G.-A., RIEBLER, A., BOLIN, D., ILLIAN, J., KRAINSKI, E., SIMPSON, D.
and LINDGREN, F. (2018). Spatial modeling with R-INLA: A review. Wiley Interdiscip. Rev.: Comput. Stat.
10 e1443, 24. MR3873676 https://doi.org/10.1002/wics.1443

BAKKA, H., VANHATALO, J., ILLIAN, J. B., SIMPSON, D. and RUE, H. (2019). Non-stationary Gaussian models
with physical barriers. Spat. Stat. 29 268-288. MR3903698 https://doi.org/10.1016/j.spasta.2019.01.002

BOLIN, D. and LINDGREN, F. (2011). Spatial models generated by nested stochastic partial differential equations,
with an application to global ozone mapping. Ann. Appl. Stat. § 523-550. MR2810408 https://doi.org/10.1214/
10-AOAS383

CASTRUCCIO, S. and GUINNESS, J. (2017). An evolutionary spectrum approach to incorporate large-scale
geographical descriptors on global processes. J. R. Stat. Soc. Ser. C. Appl. Stat. 66 329-344. MR3611690
https://doi.org/10.1111/rssc.12167

CHEN, W., CASTRUCCIO, S., GENTON, M. G. and CRIPPA, P. (2018). Current and future estimates of wind
energy potential over Saudi Arabia. J. Geophys. Res., Atmos. 123 6443-6459.

CRESSIE, N. and HUANG, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance func-
tions. J. Amer. Statist. Assoc. 94 1330-1340. MR1731494 https://doi.org/10.2307/2669946

CRIPPA, P., ALIFA, M., BOLSTER, D., GENTON, M. G. and CASTRUCCIO, S. (2021). A temporal model for
vertical extrapolation of wind speed and wind energy assessment. Appl. Energy 301 117378.

DINCER, I. (2018). 1.12 fossil fuels. In Comprehensive Energy Systems (1. Dincer, ed.) 521-567. Elsevier, Oxford.

EDWARDS, M., CASTRUCCIO, S. and HAMMERLING, D. (2020). Marginally parameterized spatio-temporal
models and stepwise maximum likelihood estimation. Comput. Statist. Data Anal. 151 107018, 12.
MR4107728 https://doi.org/10.1016/j.csda.2020.107018

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS (2016). ECMWF IFS CY41r2 high-
resolution operational forecasts. https://doi.org/10.5065/D68050ZV


https://doi.org/10.1214/23-AOAS1770SUPP
http://github.com/Env-an-Stat-group/24.Zhang.AoAS
https://mathscinet.ams.org/mathscinet-getitem?mr=3873676
https://doi.org/10.1002/wics.1443
https://mathscinet.ams.org/mathscinet-getitem?mr=3903698
https://doi.org/10.1016/j.spasta.2019.01.002
https://mathscinet.ams.org/mathscinet-getitem?mr=2810408
https://doi.org/10.1214/10-AOAS383
https://mathscinet.ams.org/mathscinet-getitem?mr=3611690
https://doi.org/10.1111/rssc.12167
https://mathscinet.ams.org/mathscinet-getitem?mr=1731494
https://doi.org/10.2307/2669946
https://mathscinet.ams.org/mathscinet-getitem?mr=4107728
https://doi.org/10.1016/j.csda.2020.107018
https://doi.org/10.5065/D68050ZV
https://doi.org/10.1214/10-AOAS383

40 ZHANG, CRIPPA, GENTON AND CASTRUCCIO

FUGLSTAD, G.-A. and CASTRUCCIO, S. (2020). Compression of climate simulations with a nonstation-
ary global spatiotemporal SPDE model. Ann. Appl. Stat. 14 542-559. MR4117819 https://doi.org/10.1214/
20-AO0AS1340

FUGLSTAD, G.-A., SIMPSON, D., LINDGREN, F. and RUE, H. (2019). Constructing priors that penalize the
complexity of Gaussian random fields. J. Amer. Statist. Assoc. 114 445-452. MR3941267 https://doi.org/10.
1080/01621459.2017.1415907

GENTON, M. G. and KLEIBER, W. (2015). Cross-covariance functions for multivariate geostatistics. Statist. Sci.
30 147-163. MR3353096 https://doi.org/10.1214/14-STS487

GIANI, P., TAGLE, F., GENTON, M. G., CASTRUCCIO, S. and CRIPPA, P. (2020). Closing the gap between wind
energy targets and implementation for emerging countries. Appl. Energy 269 115085.

GUALTIERI, G. (2019). A comprehensive review on wind resource extrapolation models applied in wind energy.
Renew. Sustain. Energy Rev. 102 215-233.

HASANEAN, H. and ALMAZROUI, M. (2015). Rainfall: Features and variations over Saudi Arabia, a review.
Climate 3 578-626.

Hu, W., FUGLSTAD, G.-A. and CASTRUCCIO, S. (2022). A stochastic locally diffusive model with neural
network-based deformations for global sea surface temperature. Stat 11 Paper No. e431, 9. MR4394991
https://doi.org/10.1002/sta4.431

Hu, X., SIMPSON, D., LINDGREN, F. and RUE, H. (2013). Multivariate Gaussian random fields using systems
of stochastic partial differential equations. Available at arXiv:1307.1379.

Hu, X.-M., NIELSEN-GAMMON, J. W. and ZHANG, F. (2010). Evaluation of three planetary boundary layer
schemes in the WRF model. J. Appl. Meteorol. Climatol. 49 1831-1844.

HuANG, J. Z., KOOPERBERG, C., STONE, C. J. and TRUONG, Y. K. (2000). Functional ANOVA model-
ing for proportional hazards regression. Ann. Statist. 28 961-999. MR1810916 https://doi.org/10.1214/aos/
1015956703

JANJIC, Z. 1. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous
sublayer, and turbulence closure schemes. Mon. Weather Rev. 122 927-945.

JEONG, J., CASTRUCCIO, S., CRIPPA, P. and GENTON, M. G. (2018). Reducing storage of global wind
ensembles with stochastic generators. Ann. Appl. Stat. 12 490-509. MR3773402 https://doi.org/10.1214/
17-AOAS1105

JEONG, J., YAN, Y., CASTRUCCIO, S. and GENTON, M. G. (2019). A stochastic generator of global monthly
wind energy with Tukey g-and-h autoregressive processes. Statist. Sinica 29 1105-1126. MR3932511

JONES, C., GIORGI, F. and ASRAR, G. (2011). The coordinated regional downscaling experiment: Cordex—an
international downscaling link to cmip5. CLIVAR Exchanges 16 34—40.

JUN, M. and STEIN, M. L. (2008). Nonstationary covariance models for global data. Ann. Appl. Stat. 2 1271-
1289. MR2655659 https://doi.org/10.1214/08- AOAS183

KAUFMAN, C. G. and SAIN, S. R. (2010). Bayesian functional ANOVA modeling using Gaussian process prior
distributions. Bayesian Anal. 5 123-149. MR2596438 https://doi.org/10.1214/10-BA505

LINDGREN, F., RUE, H. and LINDSTROM, J. (2011). An explicit link between Gaussian fields and Gaussian
Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 73 423-498. MR2853727 https://doi.org/10.1111/j.1467-9868.2011.00777.x

MOHSENI-CHERAGHLOU, A. (2021). Fossil fuel subsidies and renewable energies in mena: An oxymoron?
https://www.mei.edu/publications/fossil-fuel-subsidies-and-renewable-energies-mena-oxymoron.

NREP (2018). Saudi arabia renewable energy targets and long term visibility. national renewable energy program.

NURUNNABI, M. (2017). Transformation from an oil-based economy to a knowledge-based economy in Saudi
Arabia: The direction of saudi vision 2030. J. Knowl. Econ. 8 536-64.

PETERSON, E. W. and HENNESSEY, J. P. (1978). On the use of power laws for estimates of wind power potential.
J. Appl. Meteorol. 17 390-394.

PLEIM, J. E. (2007). A combined local and nonlocal closure model for the atmospheric boundary layer. Part I:
Model description and testing. J. Appl. Meteorol. Climatol. 46 1383—-1395.

Qu, Z., DAL, W. and GENTON, M. G. (2021). Robust functional multivariate analysis of variance with environ-
mental applications. Environmetrics 32 Paper No. e2641, 23. MR4207556 https://doi.org/10.1002/env.2641

REN21 SECRETARIAT (2021). Renewables 2021 — global status report. Paris, France.

RENEWABLES, R. (2018). Global status report (Paris: Ren21 secretariat).

RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate Bayesian inference for latent Gaussian mod-
els by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319-392.
MR2649602 https://doi.org/10.1111/j.1467-9868.2008.00700.x

SAIN, S. R., NYCHKA, D. and MEARNS, L. (2011). Functional ANOVA and regional climate experiments: A
statistical analysis of dynamic downscaling. Environmetrics 22 700-711. MR2843137 https://doi.org/10.1002/
env.1068


https://mathscinet.ams.org/mathscinet-getitem?mr=4117819
https://doi.org/10.1214/20-AOAS1340
https://mathscinet.ams.org/mathscinet-getitem?mr=3941267
https://doi.org/10.1080/01621459.2017.1415907
https://mathscinet.ams.org/mathscinet-getitem?mr=3353096
https://doi.org/10.1214/14-STS487
https://mathscinet.ams.org/mathscinet-getitem?mr=4394991
https://doi.org/10.1002/sta4.431
http://arxiv.org/abs/arXiv:1307.1379
https://mathscinet.ams.org/mathscinet-getitem?mr=1810916
https://doi.org/10.1214/aos/1015956703
https://mathscinet.ams.org/mathscinet-getitem?mr=3773402
https://doi.org/10.1214/17-AOAS1105
https://mathscinet.ams.org/mathscinet-getitem?mr=3932511
https://mathscinet.ams.org/mathscinet-getitem?mr=2655659
https://doi.org/10.1214/08-AOAS183
https://mathscinet.ams.org/mathscinet-getitem?mr=2596438
https://doi.org/10.1214/10-BA505
https://mathscinet.ams.org/mathscinet-getitem?mr=2853727
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://www.mei.edu/publications/fossil-fuel-subsidies-and-renewable-energies-mena-oxymoron
https://mathscinet.ams.org/mathscinet-getitem?mr=4207556
https://doi.org/10.1002/env.2641
https://mathscinet.ams.org/mathscinet-getitem?mr=2649602
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2843137
https://doi.org/10.1002/env.1068
https://doi.org/10.1214/20-AOAS1340
https://doi.org/10.1080/01621459.2017.1415907
https://doi.org/10.1214/aos/1015956703
https://doi.org/10.1214/17-AOAS1105
https://doi.org/10.1002/env.1068

FUNCTIONAL ANOVA FOR WIND 41

S1UTA, D., WEST, G. and STULL, R. (2017). WRF hub-height wind forecast sensitivity to pbl scheme, grid
length, and initial condition choice in complex terrain. Weather Forecast. 32 493-509.

SKAMAROCK, W. C., KLEMP, J. B., DUDHIA, J., GILL, D. O., LIU, Z., BERNER, J., WANG, W., POW-
ERS, J. G., DUDA, M. G. etal. (2019). A Description of the Advanced Research Wrf Model Version 4. National
Center for Atmospheric Research, Boulder, CO, USA.

STEIN, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics.
Springer, New York. MR16974009 https://doi.org/10.1007/978-1-4612-1494-6

STONE, C. J., HANSEN, M. H., KOOPERBERG, C. and TRUONG, Y. K. (1997). Polynomial splines and their
tensor products in extended linear modeling. Ann. Statist. 25 1371-1470. MR1463561 https://doi.org/10.1214/
a0s/1031594728

SUN, Y. and GENTON, M. G. (2012). Functional median Polish. J. Agric. Biol. Environ. Stat. 17 354-376.
MR2993271 https://doi.org/10.1007/s13253-012-0096-8

TAGLE, F., CASTRUCCIO, S., CRIPPA, P. and GENTON, M. G. (2019). A non-Gaussian spatio-temporal
model for daily wind speeds based on a multi-variate skew-¢ distribution. J. Time Series Anal. 40 312-326.
MR3946155 https://doi.org/10.1111/jtsa.12437

TARRIO-SAAVEDRA, J., NAYA, S., FRANCISCO-FERNANDEZ, M., ARTIAGA, R. and LOPEZ-BECEIRO, J.
(2011). Application of functional anova to the study of thermal stability of micro—nano silica epoxy com-
posites. Chemom. Intell. Lab. Syst. 105 114—-124.

ULLAH, S. and FINCH, C. (2013). Applications of functional data analysis: A systematic review. BMC Med. Res.
Methodol. 13.

WHITTLE, P. (1954). On stationary processes in the plane. Biometrika 41 434-449. MR0067450
https://doi.org/10.1093/biomet/41.3-4.434

WHITTLE, P. (1963). On the fitting of multivariate autoregressions, and the approximate canonical factorization
of a spectral density matrix. Biometrika 50 129-134. MR0161430 https://doi.org/10.1093/biomet/50.1-2.129

YUE, Y., BOLIN, D., RUE, H. and WANG, X.-F. (2019). Bayesian generalized two-way ANOVA modeling for
functional data using INLA. Statist. Sinica 29 741-767. MR3931386

YUE, Y. and SPECKMAN, P. L. (2010). Nonstationary spatial Gaussian Markov random fields. J. Comput. Graph.
Statist. 19 96—116. MR2654402 https://doi.org/10.1198/jcgs.2009.08124

ZHANG, J., CRIPPA, P., GENTON, M. G. and CASTRUCCIO, S. (2021). Assessing the reliability of wind power
operations under a changing climate with a non-Gaussian bias correction. Ann. Appl. Stat. 15 1831-1849.
MR4355078 https://doi.org/10.1214/21-a0as1460

ZHANG, J.-T., CHENG, M.-Y., Wu, H.-T. and ZHOU, B. (2019). A new test for functional one-way
ANOVA with applications to ischemic heart screening. Comput. Statist. Data Anal. 132 3-17. MR3913131
https://doi.org/10.1016/j.csda.2018.05.004

ZHANG, Y., HODGES, J. S. and BANERJEE, S. (2009). Smoothed ANOVA with spatial effects as a competitor to
MCAR in multivariate spatial smoothing. Ann. Appl. Stat. 3 1805-1830. MR2752159 https://doi.org/10.1214/
09-AOAS267

ZHANG, J., CRIPPA, P., GENTON, M. G and CASTRUCCIO, S. (2024). Supplement to “Sensitivity analysis of
wind energy resources with Bayesian non-Gaussian and nonstationary functional ANOVA.” https://doi.org/10.
1214/23-AOAS1770SUPP


https://mathscinet.ams.org/mathscinet-getitem?mr=1697409
https://doi.org/10.1007/978-1-4612-1494-6
https://mathscinet.ams.org/mathscinet-getitem?mr=1463561
https://doi.org/10.1214/aos/1031594728
https://mathscinet.ams.org/mathscinet-getitem?mr=2993271
https://doi.org/10.1007/s13253-012-0096-8
https://mathscinet.ams.org/mathscinet-getitem?mr=3946155
https://doi.org/10.1111/jtsa.12437
https://mathscinet.ams.org/mathscinet-getitem?mr=0067450
https://doi.org/10.1093/biomet/41.3-4.434
https://mathscinet.ams.org/mathscinet-getitem?mr=0161430
https://doi.org/10.1093/biomet/50.1-2.129
https://mathscinet.ams.org/mathscinet-getitem?mr=3931386
https://mathscinet.ams.org/mathscinet-getitem?mr=2654402
https://doi.org/10.1198/jcgs.2009.08124
https://mathscinet.ams.org/mathscinet-getitem?mr=4355078
https://doi.org/10.1214/21-aoas1460
https://mathscinet.ams.org/mathscinet-getitem?mr=3913131
https://doi.org/10.1016/j.csda.2018.05.004
https://mathscinet.ams.org/mathscinet-getitem?mr=2752159
https://doi.org/10.1214/09-AOAS267
https://doi.org/10.1214/23-AOAS1770SUPP
https://doi.org/10.1214/aos/1031594728
https://doi.org/10.1214/09-AOAS267
https://doi.org/10.1214/23-AOAS1770SUPP

	Introduction
	Data description
	Model
	Inference
	Step 1: Temporal structure
	Step 2: Covariates and spatial effects
	Bayesian inference for latent Gaussian models

	Simulation studies
	Design
	Metrics
	Results: Gaussian model
	Results: Bernoulli model

	Application
	Wind speed extrapolation
	Sensitivity of wind speed and energy
	Sensitivity of threshold exceedances

	Conclusion
	Funding
	Supplementary Material
	References

